If $\vec A = 2\hat i + \hat j - \hat k,\,\vec B = \hat i + 2\hat j + 3\hat k$ and $\vec C = 6\hat i - 2j - 6\hat k$ then the angle between $(\vec A + \vec B)$ and $\vec C$ wil be ....... $^o$
$30$
$45$
$60$
$90$
Find the angle between two vectors $\vec A = 2\hat i + \hat j - \hat k$ and $\vec B = \hat i - \hat k$ ....... $^o$
Three vectors $\overrightarrow a ,\,\overrightarrow b $and $\overrightarrow c $ satisfy the relation $\overrightarrow a \,.\,\overrightarrow b = 0$ and $\overrightarrow a \,.\,\overrightarrow c = 0.$ The vector $\overrightarrow a $ is parallel to
The area of the parallelogram whose sides are represented by the vectors $\hat j + 3\hat k$ and $\hat i + 2\hat j - \hat k$ is
Projection of vector $\vec A$ on $\vec B$ is